high precision SiC based UV-Index photodiode with cosine correction

GENERAL FEATURES

Properties of the SGo1L–E5D UV photodiode

- ISO 17166 compliant UV-Index photodiode, uncertainty less than 5%
- Active Area A = 1.0 mm², PTB reported high chip stability
- TO5 hermetically sealed metal housing, 1 isolated pin and 1 case pin
- 1 UVI (2.5 μ W/cm²) = 2.5 nA. This item needs an appropriate signal transducer transducer.

About the sglux SiC UV photodiodes

SiC provides the unique property of extreme radiation hardness, near-perfect visible blindness, low dark current, high speed and low noise. These features make SiC the best available material for visible blind semiconductor UV detectors. By standard our SiC detectors can be permanently operated at up to 170°C. A 350°C version is available. The temperature coefficient is also low, < 0.1%/K. Because of the low noise (dark current in the fA range), very low UV irradiance can be measured reliably. Please note that this device needs an appropriate signal transducer transducer (see typical circuit on page 3).

Information about the UV-Index (UVI)

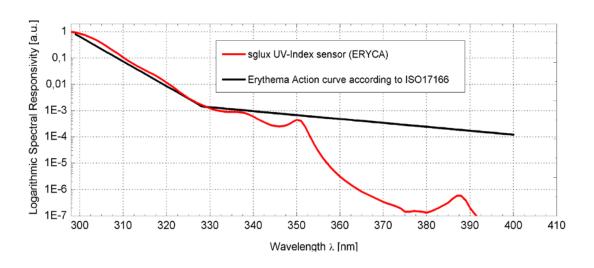
The UV-Index, defined by ISO 17166 standard is a measure of how dangerous the ultraviolet (UV) radiation from the sun is at a particular place on a particular day. It is a scale primarily used in daily forecasts aimed at the general public. The UV-Index is calculated by integrating the sun's UV spectrum multiplied with the Erythema action curve (see spectral response). That integral is divided by 25 mW/m^2 to generate a convenient index value, which becomes essentially a scale of o to 10. The Erythema action curve is a wavelength resolved measure of the sunburn danger. It is maximised at 297 nm (UVB) and then strongly decreases towards UVA radiation. Literature: A. F. McKinlay and B. L. Diffey, "A reference action spectrum for ultraviolet induced erythema in human skin" CIE Journal, 6-1. 17-22 (1987)

NOMENCLATURE

SG01	J			
S, D, L, F, XL	nothing, A, B, C, C-LED or E	18, 18 SO90, 18S, 5, 5 SO90	nothing, Lens, D	
Chip area	Spectral response	Housing	Special	
S 0.06 mm ²	nothing = broadband $\lambda_{max} = 280 \text{ nm}$ $\lambda_{510\%} = 221 \text{ nm} \dots 358 \text{ nm}$	18 2-pin TO18 housing, h = 5.2 mm, 1 pin isolated, 1 pin grounded	Lens with concentrating	
D 0.50 mm²	A = UVA $λ_{max} = 331 \text{ nm}$ $λ_{S10\%} = 309 \text{ nm} 367 \text{ nm}$	1815090 3-pin TO18 housing, h = 5.2 mm, 2 pins isolated, 1 pin grounded	lens, TO5 only	
L 1.00 mm ²	B = UVB $λ_{max} = 280 \text{ nm}$ $λ_{S10\%} = 231 \text{ nm} \dots 309 \text{ nm}$	18S 2-pin TO18 housing, h = 3.7 mm, 1 pin isolated, 1 pin grounded	D with diffuser for cosine FOV	
F 1.82 mm [.]	C = UVC $\lambda_{max} = 275 \text{ nm}$ $\lambda_{S10\%} = 225 \text{ nm} \dots 287 \text{ nm}$	5 2-pin TO5 housing, h = 4.3 mm for broadband; h = 6.7 mm for filtered UVA, UVB, UVC, UVI		
XL 7.60 mm²	E = UV-Index spectral response according to ISO17166	515090 3-pin TO5 housing, h = 4.2 mm, 2 pins isolated, 1 pin grounded		

sg_{LUX} GmbH | Richard-Willstätter-Str. 8 | D–12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de Rev. 7.0 Our company is subject to quality management according to ISO9001:2015 - TÜV Rheinland certificate number 011002300303.

high precision SiC based UV-Index photodiode with cosine correction

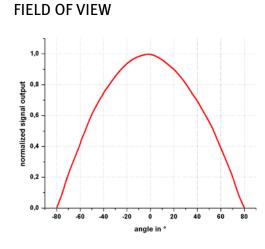


2/4

SPECIFICATIONS

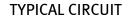
Parameter	Symbol	Value	Unit
Spectral Characteristics			
Approx. Responsivity (UNIT IS NOT CALIBRATED)	Smax	0.10	AW -1
Visible Blindness (S _{max} /S _{>405nm})	VB	> 10 ¹⁰	-
General Characteristics (T=25°C)			
Active Area	А	1.0	mm²
Dark Current (1V reverse bias)	ld	3.3	fA
Capacitance	С	250	рF
Short Circuit (1 UVI)	lo	2.5	nA
Temperature Coefficient	Tc	< 0.1	%/K
Maximum Ratings			
Operating Temperature	T _{opt}	-55 +170	°C
Storage Temperature	T_{stor}	-55 +170	°C
Soldering Temperature (3s)	T _{sold}	260	°C
Reverse Voltage	V _{Rmax}	20	V

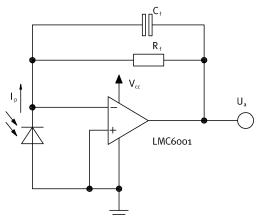
NORMALIZED SPECTRAL RESPONSIVITY & ERYTHEMA ACTION CURVE



sg_{LUX} GmbH | Richard-Willstätter-Str. 8 | D–12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de Rev. 7.0 Our company is subject to quality management according to ISO9001:2015 - TÜV Rheinland certificate number 011002300303.

high precision SiC based UV-Index photodiode with cosine correction


3/4



Measurement Setup

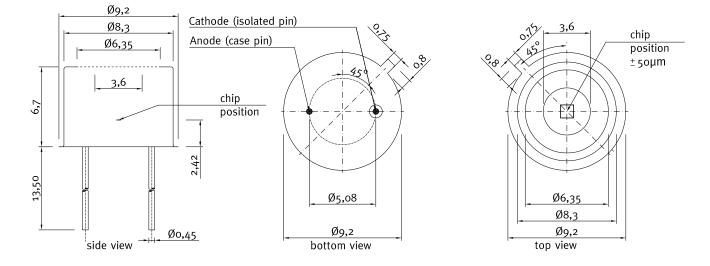
lamp aperture diameter: 10 mm distance lamp aperture to second aperture: 17 mm second aperture diameter: 10 mm distance second aperture to detector: 93 mm

pivot level = top surface of the photodiode window

DRAWINGS

Calculations and Limits:

 $U_a = I_p x R_f = o \dots \sim V_{cc}$


U_{a,max} depends on load and amplifier type

 $\begin{array}{l} R_{f} = \mbox{10} k\Omega \ ... \ \sim \ \mbox{10} G\Omega, \ C_{f} \geq \mbox{3pF} \\ \mbox{Recommendation:} \ R_{f} x \ C_{f} \geq \mbox{10}^{-3} s \\ I_{p,max} = U_{a,max} \ \div \ R_{f} \end{array}$

Bandwidth = DC ...

$$\frac{1}{2\pi \text{ x } \text{ R}_{\text{f}} \text{ x } \text{ C}_{\text{f}}}$$

Example: $I_p = 20$ A, $R_f = 100 M\Omega$, $C_f = 100 \text{ pF}$ $U_a = 20 \times 10^9 \text{A} \times 100 \times 10^6 \Omega = 2 \text{V}$

sg*LUX* GmbH | Richard-Willstätter-Str. 8 | D–12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de Rev. 7.0 Our company is subject to quality management according to ISO9001:2015 - TÜV Rheinland certificate number 011002300303.

high precision SiC based UV-Index photodiode with cosine correction

APPLICATION NOTE FOR PHOTODIODES

For correct reading of the photodiode the current (and NOT the voltage) must be analyzed. This requires a short circuiting of the photodiode. Usual approaches are using a **Picoamperemeter** or a **transimpedance signal transducer** circuit as shown on page 3.

UPGRADE TO A TOCON OR A PROBE FOR UV INDEX MEASUREMENTS

TOCONs = UV sensors with integrated signal transducer

- SiC based UV hybrid detector with signal transducer (o-5V output),
- No additional signal transducer needed, direct connection to controller, voltmeter, etc.
- With erythema filter, measures intensities up to 30 UVI

TOCON_UVI = miniature sensor probe

- UV-Index hybrid sensor (TOCON) in a PTFE housing (with G1/4" thread)
- EMC safe, with erythema filter
- Integrated sensor connector (Binder 4-Pin plug) with 2m connector cable
- Easy to mount and connect, increased EMC safety

UV-Cosine_UVI sensor probe (ERYCA)

- Special water proof and dirt-repellent housing for outdoor measurements
- Housing made of PTFE with cosine FOV, with erythema filter
- Different electronic outputs configurable (voltage, current loop, USB, Modbus, CAN)
- Good EMC safety

CALIBRATION SERVICE

Before using this photodiode a calibration is needed. Our ISO9001:2015 - certified calibration laboratory offers a PTB traceable calibration of the photodiode. Our calibration laboratory is traceable to PTB (The National Metrology Institute of Germany) and works according to guideline DAkkS 71 SD 0 025 and CIE 220:2016.